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This paper presents a novel fault diagnosis method for analog circuits using ensemble empirical mode decomposition (EEMD),
relative entropy, and extreme learning machine (ELM). First, nominal and faulty response waveforms of a circuit are measured,
respectively, and then are decomposed into intrinsic mode functions (IMFs) with the EEMDmethod. Second, through comparing
the nominal IMFs with the faulty IMFs, kurtosis and relative entropy are calculated for each IMF. Next, a feature vector is obtained
for each faulty circuit. Finally, an ELM classifier is trained with these feature vectors for fault diagnosis. Via validating with two
benchmark circuits, results show that the proposedmethod is applicable for analog fault diagnosis with acceptable levels of accuracy
and time cost.

1. Introduction

Numerous researches have indicated that analog circuit fault
diagnosis is a significant fundamental for design validation
and performance evaluation in the integrated circuit man-
ufacturing fields [1–3]. In contrast to the well-developed
diagnostic methods for digital circuits, diagnosis for analog
circuits is an extremely difficult problem and an active
research due to the following reasons: (1) there is lack of a reli-
able and practical fault modeling method for analog circuits
because of the complexity and variability of analog circuit
structures; (2) the parameter values of analog components are
continuous; (3) the impact of tolerance and nonlinear nature
issues cannot be ignored; (4) for actual analog circuits, test
points are limitations.

The procedure of fault diagnosis for analog circuits can
be generally classified into four stages: data acquisition,
feature extraction, fault detection, and fault identification and
isolation. As one of the foremost stages in fault diagnosis,
feature extractionmethods are closely related to the efficiency
of fault diagnosis. Many feature extraction methods have
been proposed such as correlation function technique [4],
information entropy approach [5], the fast Fourier transform
technique [6], and the wavelet transform technique [7].

Zhang et al. [8] directly used the output voltage as features
for fault diagnosis of analog circuits without preprocessing
methods, and the results of fault diagnosis are not very good.
M. Aminian and F. Aminian proposed a diagnostic method
of analog circuits using wavelet decomposition coefficients,
principal component analysis (PCA), and data normalization
to construct fault feature vectors and then trained and tested
neural network classifiers [3]. The method can obtain higher
accuracy of diagnosis. In [9], Long et al. adopted conventional
time-domain feature vectors to train and test least squares
support vector machines (LS-SVM) for fault diagnosis of
analog circuits which has better accuracy than that with
traditional wavelet feature vectors. For information entropy
techniques, it is more sensitive to parameter variations of
components in CUTs. Therefore, information entropy is
widely used with other techniques for fault diagnosis [5, 10–
12]. Xie et al. diagnosed soft faults of analog circuits using
Rényi’s entropy and the result is effective [5]. In [11], authors
have developed a new fault diagnosis approach by using
kurtosis and entropy of sampled signals as feature vectors to
train a neural network classifier.

However, there are some problems which should be
considered and solved in feature extraction. Firstly, how
to select features to train classifiers should be considered
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because different features with different classifiers for analog
fault diagnosis have different results. Secondly, we find that
most of the aforementioned methods were validated with
some discrete simulations data. That is, they only considered
a CUT to be faulty when a component value is higher or
lower than its nominal value by 50%. It means this method
has low fault coverage.Thirdly, somemethods should take the
influence of tolerance and the continuity of faulty parameters
into account.

In our work, therefore, we use the techniques of EEMD,
kurtosis, and relative entropy to construct new feature vectors
to train an ELM classifier to improve the diagnosability and
reduce time cost. As an adaptive time frequency data analysis
method ensemble empirical mode decomposition (EEMD)
is suitable for linear, nonlinear, and no-stationary signals
[13]. Recently, it has been successfully applied to extract
significant fault features in many fields such as rotating
machinery and locomotive roller bearings fault diagnosis [13–
15]. Relative entropy method is rarely used in the analogy
circuit fault diagnosis field. The difference between the
probability distributions of faulty and fault-free circuits can
be distinguished clearly by adopting relative entropy, because
when a component is varied, the energy distribution is also
changed which leads to change in relative entropy. Kurtosis is
ameasure of heavy tailed distribution of a real valued random
variable. It can clearly describe the difference from wave-
forms. As a result, the combinationalmethods of kurtosis and
relative entropy are suitable as fault features for analog fault
diagnosis.

As a consequence, in this paper, we decomposed impulse
responses of a CUT into IMFs using EEMD method and
then adopting kurtosis and relative entropy techniques to
obtain feature vectors. These features vectors can be used
for diagnosis of faulty components among various variation
possibilities. For this purpose, a classifier is needed. We
selected extreme learning machine (ELM) classifier because
it is proven to have excellent generalization performance
and low computational cost [16, 17] when it is fed to train
and test with fault features. Utilizing the combination of
EEMD, relative entropy, and ELM algorithms for feature
extraction and classification we can complete analog circuit
fault diagnosis. It demonstrates reliable and accurate fault
diagnosis with reduced test time.

This paper is organized as follows: Section 2 briefly
presents the principle of EEMD, relative entropy, and ELM
algorithms. In Section 3, the diagnostic procedure of the pro-
posed method is introduced. Section 4 shows the simulation
experiment details and results for two benchmark analog
circuits. And then the performance of the proposed method
is also discussed in the Section. Finally the conclusions are
drawn in Section 5.

2. A Review of Fundamental Theory

In the work, we combined EEMD, relative entropy, and ELM
to perform fault diagnosis of analog circuits. Fundamentals
of EEMD, relative entropy, and ELM are introduced firstly as
follows.

2.1. Ensemble Empirical Mode Decomposition (EEMD). En-
semble empirical mode decomposition, based on empirical
mode decomposition (EMD), is to solve the aliasing in time
frequency distribution with Gaussian white noise [13]. Based
on simple assumption any signal consists of different simple
intrinsic modes of oscillations from low to high frequency
[13, 19]. Thus, original signal is defined as

𝑥 (𝑡) =

𝑛

∑

𝑖=1

𝑐
𝑖
(𝑡) + 𝑟

𝑛
(𝑡) , (1)

where 𝑐
𝑖
(𝑡) is the intrinsic mode functions (IMF). An IMF

is defined as a simple oscillatory function that satisfies two
conditions [18]:

(1) It has the same number of extrema and zero crossing
or has the difference nomore than one between them.

(2) The mean value of the envelopes defined by the local
maxima and minima is zero.

From (1), we can see that the original signal is decom-
posed into 𝑛 IMFs and one residue 𝑟

𝑛
(𝑡). The procedure of

decomposition with shifting method is described as follows.

Step 1. Given a signal 𝑥(𝑡), all local maxima and minima of
it are gained firstly. Then upper and lower envelopes of the
given signal are determined from a cubic spline interpolation
of the local maxima and minima. Let 𝑚

1
be the mean of the

two envelopes and the first component ℎ
1
(𝑡) is obtained as

ℎ
1
(𝑡) = 𝑥 (𝑡) − 𝑚

1
. (2)

Step 2. Let 𝑚
11

be the mean of ℎ
1
(𝑡)’s upper and lower

envelopes and ℎ
11
(𝑡) is calculated as follows:

ℎ
11
(𝑡) = ℎ

1
(𝑡) − 𝑚

11
. (3)

Step 3. Repeat the above procedure 𝑛 times until ℎ
1𝑛
(𝑡)

satisfies IMF conditions. The first IMF 𝑐
1
(𝑡) is obtained by

𝑐
1
(𝑡) = ℎ

1𝑛
(𝑡).

Step 4. Subtract 𝑐
1
(𝑡) from 𝑥(𝑡), and a residue is obtained as

𝑟
1
(𝑡) = 𝑥 (𝑡) − 𝑐

1
(𝑡) . (4)

Step 5. The residue, which contains useful information, is
considered as main signal and Steps 1–4 are repeated to gain
other IMFs. Formula (4) is rewritten as

𝑟
𝑖
(𝑡) = 𝑟

𝑖−1
(𝑡) − 𝑐

𝑖
(𝑡) 𝑖 = 1, 2, . . . , 𝑛. (5)

Step 6. When the residue 𝑟
𝑛
(𝑡) becomes monotonic slope or

has only one extreme, the whole procedure is stopped.

From the procedure, we can see that IMFs represent the
degree of oscillation of signal in amplitude and frequency. It
means that these IMFs contain much time frequency infor-
mation of the signal. Thus, the authors in [13] indicated that
the algorithm is a new high-performance signal processing
approach which can deal with linear, nonlinear, and no-
stationary signals. More details about this technique can be
found in [13, 19].
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Figure 1: SLFN.

2.2. Relative Entropy. Let𝑋 be a continuous randomvariable.
𝑝(𝑥) and 𝑞(𝑥) are the probability distributions of 𝑋. Relative
entropy describes the distance between two probability dis-
tributions of𝑋. The relative entropy is calculated as

𝐷(𝑝 ‖ 𝑞) = ∫

𝑥∈𝑋

𝑝 (𝑥) log
𝑝 (𝑥)

𝑞 (𝑥)
, (6)

where 𝑝(𝑥) denotes energy probability distribution function
(PDF) of response voltages for faulty CUT and 𝑞(𝑥) indicates
normal response voltage PDF of fault-free CUT. When
parameters of one or more components of CUT are changed,
the PDF of corresponding output voltage will also vary.
This means that it is more sensitive to parameter variations
of components in CUT. By calculating the relative entropy
between faulty and fault-free circuit, faults can be detected.
Consequently, for fault diagnosis, relative entropy is suitable
as fault feature.

2.3. Extreme Learning Machine. In order to accurately and
quickly diagnose faults, in our work, extreme learning
machine (ELM) is adopted. ELM is one kind of fast algo-
rithm of single hidden-layer feedforward networks (SLFN)
as shown in Figure 1. The hidden layer of SLFN need not be
tuned. It is proven that it has excellent generalization per-
formance and low computational cost in many applications
[16, 17]. In the paper we utilize it to do fault diagnosis as a
classifier. A brief of review of ELM is described as follows [16].

Suppose (𝑋
𝑖
, 𝑡
𝑖
) ∈ 𝑅

𝑛

× 𝑅
𝑚 are 𝑁 arbitrary distinct

samples, 𝑋
𝑖
= [𝑥

𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
]
𝑇. For a SLFN with 𝐿

hidden nodes, taking one output node as example, the output
function is defined as

𝑓
𝐿
(𝑋) = 𝑂

𝑗
=

𝐿

∑

𝑖=1

𝛽
𝑖
𝑔 (𝑊
𝑖
⋅ 𝑋
𝑗
+ 𝑏
𝑖
) = 𝐻𝛽.

𝑗 = 1, 2, . . . , 𝑁,

(7)

where 𝛽 = [𝛽
1
, 𝛽
2
, . . . , 𝛽

𝐿
]
𝑇 is the output weight between

hidden layer and output layer. 𝑔(𝑋) is the activation function
which demonstrates the output vector of the hidden layer
with respect to the input 𝑋. 𝑊

𝑖
= [𝑤
𝑖1
, 𝑤
𝑖2
, . . . , 𝑤

𝑖𝑛
]
𝑇 is the

input weight of the 𝑖th hidden node and 𝑏
𝑖
denotes the bias
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Figure 2: Block diagram of fault diagnosis.

of hidden node 𝑖. And 𝑊
𝑖
⋅ 𝑋
𝑗
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and 𝑋

𝑗
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The target of ELM is to minimize the output error; hence the
minimal norm least square method is adopted.

Minimize: 𝐻𝛽 − 𝑇


2

, (9)

where 𝑇 = [𝑡
1
, 𝑡
2
. . . , 𝑡
𝑁
]
𝑇 indicates the expected value of

output. Once 𝑊
𝑖
and 𝑏
𝑖
are determined, 𝐻 is also uniquely

confirmed. According to formula (7), the output weight can
be calculated by

𝛽 = 𝐻
+

𝑇, (10)

where𝐻+ is theMoore–Penrose generalized inverse ofmatrix
𝐻.

3. Diagnostic Procedure

3.1. Diagnostic Procedure. The diagnostic procedure based
on EEMD, relative entropy, and ELM is shown in Figure 2.
The procedure of the proposed method involves four major
stages: data acquisition, data processing, training, and fault
diagnosis. Once the response voltage waveforms of fault-
free circuit and fault circuits are recorded, respectively, they
will be decomposed into IMF components by using EEMD.
Through utilizing the energy of each IMF, then, kurtosis and
relative entropy can be obtained between faulty IMFs and
fault-free IMFs. Kurtosis and relative entropy of some IMFs
of each fault are selected to compose a fault feature vector.
The unique feature vector is extracted for each fault which is
used for training and testing ELM classifier to complete fault
diagnosis.

3.2. The Procedure of Feature Extraction. The procedure of
feature extraction of the proposed method is described as
follows.

Step 1. Every fault (including fault-free status) of CUT is
simulated in PSPICE. And the relevant output waveforms are
obtained.
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Step 2. Decompose each waveform with EEMD into 𝑛 IMFs
according to the method in Section 2.1.

Step 3. Calculate kurtosis and relative entropy of each IMF.

Step 3.1. Obtain kurtosis from each IMF. According to [11],
kurtosis is a measure of the heaviness of the tails in a
distribution of the signal 𝑥 [20]; hence, kurtosis could react
to the change of signals and be used as feature of signals.
Kurtosis is defined in the zero-mean case as follows [11]:

kurt
𝑖
(𝑥) = 𝐸 {𝑥

4

} − 3 [𝐸 {𝑥
2

}]
2

𝑖 = 1, 2, . . . , 𝑛, (11)

where 𝐸() is the expectation operator; kurt
𝑖
() is the kurtosis

of IMF 𝑖 for a fault.

Step 3.2. Calculate relative entropy of each IMF.

(1) Calculate total energy of each IMF by

𝐸
𝑛
=

𝐾

∑

𝑖=1

(𝐶
𝑛
(𝑖))
2

𝑖 = 1, 2, . . . , 𝐾, (12)

where 𝐶
𝑛
(𝑖) is the 𝑛th IMF and the length of 𝐶

𝑛
(𝑖) is

equal to 𝐾.
(2) Calculate probability distribution. According to [21],

the nonnegative energy distribution can be visualized
as probability distribution of signal. Hence, the pro-
cess of calculating energy distribution is as follows:
each IMF is averagely divided into 𝑚 segments as
shown in Figure 3 where 𝑚 is 6. The energy of each
segment is equal to

𝐸
𝑛𝑚
=

𝑛
2

∑

𝑖=𝑛
1

(𝐶
𝑛
(𝑖))
2

, (13)

where 𝑚 = 1, 2, 3, . . . , 6 is the number of segments;
𝑛
1
and 𝑛
2
are starting and stopping time points of the

segment. The energy distribution of each segment in
the whole IMF can be expressed as

𝑝
𝑛𝑚
=
𝐸
𝑛𝑚

𝐸
𝑛

. (14)
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(3) According to the relative entropy theory, the defini-
tion of relative entropy of each IMFs is

𝐷
𝑛
=

6

∑

𝑚=1

𝑝
𝑛𝑚

log
𝑝
𝑛𝑚

𝑝
𝑜𝑚

, (15)

where 𝑝
𝑜𝑚

is the energy distribution of segment of
nominal IMF of fault-free circuit.

Step 4. A feature vector for each fault can be given as

𝑇
𝑘
= [kurt

1
, kurt
2
, . . . , kurt

𝑖
, 𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑖
]

𝑖 = 1, 2, . . . , 𝑛,

(16)

where 𝑘 denotes the number of fault samples in a circuit and
𝑛 is the number of IMFs of one fault. Normalizing the feature
vectors in formula (16) is reasonable to do.Here, we use partly
normalizedmethod to normalize some features in the feature
vector which is defined as follows:

𝑇norm 𝑘 = [
kurt
1

max
𝑘
(kurt
1
)
,

kurt
2

max
𝑘
(kurt
2
)
, . . . ,

kurt
𝑖

max
𝑘
(kurt
𝑖
)
, 𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑖
] 𝑖 = 1, 2, . . . , 𝑛.

(17)

Finally, we could use the feature vectors to train and test an
ELM classifier for fault diagnosis.

4. Experiment and Performance Results

4.1. A Sallen-Key Bandpass Filter. To verify the capacity of
fault diagnosis with the proposed method, the first example
circuit is a second-order Sallen-Key bandpass filter circuit,
which is a benchmark circuit and is used as a CUT in
[3, 9, 18]. Figure 4 shows the schematic of the circuit with
nominal parameter values. From the figure, we can see that
the filter circuit consists of 5 resistors, 2 capacitors, and 1
operational amplifier. First, the operational amplifiers in the
circuit are assumed to be fault-free. Second we suppose each
potential faulty component’s nominal value is k and its faulty
parameter range is [10−4 ∗ k, 95% ∗ k] and [105% ∗ k,
10
4

∗ k]. The nominal and faulty parameter ranges of the
filter’s components are shown in Table 1. In the table, there are
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Figure 5: Examples of waveforms of fault-free status and fault status for the Sallen-Key bandpass filter circuit. (a) It is fault-free waveform,
and (b), (c), (d), (e), and (f) are fault waveforms for C1 ⇑, C1 ⇓, C2 ⇓, R2 ⇓, and R3 ⇓, respectively.

Table 1: Fault configuration for Sallen-Key filter circuit.

Fault ID Faults Nominal values Faulty parameter ranges
F0 No-fault
F1 R1 ⇓ 5.18k [0.5, 4.92k]
F2 R1 ⇑ 5.18k [5.44k, 51meg]
F3 R2 ⇓ 1k [0.1, 0.95k]
F4 R2 ⇑ 1k [1.05k, 10meg]
F5 R3 ⇓ 2k [0.2, 1.9k]
F6 R3 ⇑ 2k [2.1k, 20meg]
F7 R4 ⇓ 4k [0.4, 3.8k]
F8 R4 ⇑ 4k [4.2k, 40meg]
F9 R5 ⇓ 4k [0.4, 3.8k]
F10 R5 ⇑ 4k [4.2k, 40meg]
F11 C1 ⇓ 5n [0.5p, 4.75n]
F12 C1 ⇑ 5n [5.25n, 50u]
F13 C2 ⇓ 5n [0.5p, 4.75n]
F14 C2 ⇑ 5n [5.25n, 50u]

total 15 faults including fault-free status where ⇑ and ⇓ stand
for being higher and lower than nominal values, respectively.

According to the fault classes in Table 1, we use
OrCAD/PSpice to simulate the circuit with time-domain
transient analysis and Monte Carlo analysis methods to
obtain the simulation fault data. First, the Sallen-Key band-
pass filter is stimulated by a excitation signal V1 which is a
single pulse of 10V with 10 𝜇s duration. The run to time and
max step size are set as 300 𝜇s and 0.1 𝜇s, respectively. The
output voltage values are gained at the point “out.” And, to
consider the effects of the component tolerances, the resistors

and capacitors are assumed to have tolerance limits of ±5%.
When all the components are varying within their tolerances
the circuit is considered no-fault. Otherwise, the parameter
value of any component is out of scope of its tolerance limit
with the other components varying within their tolerances
which is regarded as a fault.

In order to close to the actual circuit characteristic, every
fault class will be simulated 150 times in faulty parameter
ranges using Monte Carlo analysis method in time domain
and a total of 2250 corresponding impulse response wave-
forms are obtained. Some related waveforms are shown
in Figure 5. In the figure, (a) is the fault-free waveform
and others are different impulse response waveforms about
different faulty circuits.

The simulation data in PSpice are recorded and imported
into Matlab, and then their feature vectors are constructed
with kurtosis and relative entropy to train an ELM classifier.
The detail is described as follows.

First, to construct the feature vectors, we decompose
these stored responses data into IMF components with
EEMDmethod based on the discussion in Section 3. Figure 6
displays the results of EEMD decomposition of no-fault
circuit and faulty C1 ⇓. In the figure, each of the two response
signals is decomposed into 10 IMF curves and a residue
from high frequency to low frequency. From the figure, we
can clearly see that in same decomposition layer, faulty IMF
differs obviously from fault-free IMF.Therefore, here, we only
take C4–C9 IMF components into account to improve fault
distinguishability that can satisfy our work.

Next, kurtosis of each IMF for a certain fault circuit
is calculated. Meanwhile each IMF waveform (300 𝜇s, 3000
samples) is averagely divided into 6 segments. The PDF of
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Figure 6: EEMD decomposition results of two response signals. In the decomposition, noise for standard deviation 0.2 is added, and the
ensemble number is 800. (a) The nominal response signal decomposition results; (b) EEMD results of the response signal of C1 ⇓.

Table 2: PDF of the nominal IMFs of fault-free circuit.

Fault name IMFs PDF
𝑝
𝑛1

𝑝
𝑛2

𝑝
𝑛3

𝑝
𝑛4

𝑝
𝑛5

𝑝
𝑛6

Fault-free

C4 0.9710 0.0061 0.0047 0.0058 0.0063 0.0060
C5 0.9683 0.0316 0.0000 0.0000 0.0000 0.0000
C6 0.4853 0.4481 0.0657 0.0009 0.0000 0.0000
C7 0.1316 0.0892 0.3222 0.3515 0.0982 0.0073
C8 0.5588 0.3277 0.0419 0.0011 0.0228 0.0476
C9 0.1302 0.2072 0.0276 0.2257 0.3032 0.1062

each IMF is calculated according to (12), (13), and (14). Table 2
demonstrates PDFs of the nominal response IMFs for fault-
free circuit. Therefore, relative entropy between each IMF
of faulty components and corresponding nominal IMF of
fault-free circuit is achieved by adopting formula (15). Feature
vector𝑇 for each fault classwill be built to feed directly into an
ELM classifier. Take C1 ⇓; for example, Table 3 shows a result
of feature extraction which is a feature vector of the faulty C1
through calculating its kurtosis and relative entropy with (11),
(15), and (16). Its fault feature vector is 𝑇 = [0.6162, 0.8729,
0.9813, 0.8713, 0.9203, 0.7989, 0.0099, 0.0109, 0.2260, 0.7400,

0.1266, 0.4903]. As the same way, a total of 2250 fault feature
vectors of the circuit can be obtained.

Finally, for every fault class of the Sallen-Key circuit,
150 samples are split into two parts. The first 100 fault
feature vectors are adopted to train an ELM classifier and
the remaining 50 fault feature vectors are used to test the
ELM. Because the testing accuracy is sensitive to the selection
of activation functions, the RBF function is proper for the
diagnostic and the number of neurons is set as 250.

In order to show the performance of the proposed
diagnostic method, we compare our method with other
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Table 3: Feature vector of C1 ⇓.

Fault name IMFs Relative entropy𝐷
𝑖

Normalized kurtosis Feature vector 𝑇

C1 ⇓

C4 0.0099 0.6162
𝑇norm =
[0.6162 0.8729 0.9813
0.6713 0.9203 0.7989
0.0099 0.0109 0.2660
0.7400 0.1266 0.4903]

C5 0.0109 0.8729
C6 0.2660 0.9813
C7 0.7400 0.8713
C8 0.1266 0.9203
C9 0.4903 0.7989

Table 4: Results of fault classification of the Sallen-Key filter for single faults.

Fault number Fault name Test accuracy
Proposed Wavelet [3] + ELM Lifting wavelet [18] + ELM [11] + ELM

F0 No-fault 1.0000 0.8600 1.0000 1.0000
F1 R1 ⇓ 0.9700 0.9800 1.0000 0.9800
F2 R1 ⇑ 1.0000 0.8700 1.0000 1.0000
F3 R2 ⇓ 1.0000 1.000 1.0000 0.9300
F4 R2 ⇑ 1.0000 0.9800 1.0000 1.0000
F5 R3 ⇓ 1.0000 0.8700 1.0000 1.0000
F6 R3 ⇑ 0.9700 0.7800 0.9500 0.8200
F7 R4 ⇓ 0.9900 0.9400 1.0000 1.0000
F8 R4 ⇑ 1.0000 0.8400 1.0000 1.0000
F9 R5 ⇓ 1.0000 0.9600 1.0000 1.0000
F10 R5 ⇑ 1.0000 0.8200 1.0000 1.0000
F11 C1 ⇓ 1.0000 0.8000 1.0000 1.0000
F12 C1 ⇑ 0.9700 0.6400 0.9400 0.9600
F13 C2 ⇓ 1.0000 1.0000 1.0000 1.0000
F14 C2 ⇑ 1.0000 0.9800 1.0000 1.0000

Average accuracy 0.9940 0.8880 0.9930 0.9790

existing feature extraction methods which are presented in
[3, 11, 18] to train anELMclassifier.The results of classification
are demonstrated in Table 4. For the single faults diagnosis
of the Sallen-Key bandpass filter circuit, the average test
accuracy of our method is 99.4%. In contrast, the wavelet and
ELM method (88.8%), the lifting wavelet and ELM method
(99.3%), and the method in [11] (97.9%) are lower than ours
in test accuracy. Thus, we can see that the performance of
the proposed method is superior to the combination method
of wavelet and ELM and the method of [11]. Meanwhile, it
has nearly the same accuracy as the lifting wavelet and ELM
method. Moreover, these methods [3, 11, 18] only considered
a CUT to be faulty when the value of potential faulty
component is higher or lower than the nominal value by
50% and did not take the continuity of faulty parameters and
the influence of tolerances into account. If we use the same
method considering only 50% variation as faulty parameter
values, the test accuracy of our method could be up to 100%
in simulation.

For reducing time cost, we adopt an ELM algorithm as a
classifier because it is one of the best classification algorithms
and it also can provide higher performance in time cost.
Table 5 shows ELM-based method’s performance and SVM-
based method’s performance in time cost with the same four
types of original feature vectors, respectively.The four feature

Table 5: Comparison of time cost and test accuracy between ELM-
based method and SVM-based method for the Sallen-Key bandpass
filter.

Feature extraction method Time (s)/accuracy (%)
SVM classifier ELM classifier

Wavelet coefficients [3] 11.2/93.1 0.0289/88.8
Kurtosis and entropy [11] 7.1/98.6 0.0213/97.9
Lifting wavelet [18] 14.6/99.2 0.0350/99.3
Proposed method 9.3/99.8 0.0275/99.4

vectors are based on different feature extraction methods.
From the table, it can be seen that the test accuracy of
ELM-based method is approximate to SVM-based method’s
accuracy. For example, the test accuracy of SVM-based
method is 98.6% for the kurtosis and entropy technique,
which is similar to the ELM-basedmethod (97.9%). However,
the time consumption of the ELM-based method is much
lower than the SVM-based method. For instance, using
wavelet coefficients as features to train SVM classifiers,
it takes 11.2 s; on the contrary, it takes 0.0289 s with an
ELM classifier. For our proposed method, its time cost is
better than wavelet coefficients technique and lifting wavelet
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Figure 7: Schematic of a leapfrog filter.

technique. As a result, the proposed method in the paper can
reduce time cost greatly.

4.2. A Leapfrog Filter. The second example circuit is a
leapfrog filter, which is used as a CUT in [9]. The nominal
values of the benchmark circuit’s components are shown in
Figure 7. The input signal is also a single pulse with 5V
amplitude and 10𝜇s duration. The “out” point of the circuit
is the only test point. As we all know, several components of a
CUT may cause faults simultaneously in practice. Therefore,
in the experiment, 10multifault cases are selected to verify our
proposed method’s diagnostic performance for multifaults
in the CUT, which is the same fault option as in [9]. These
fault classes are shown in Table 6. The experiment is also
carried out through injecting these faults classes to the CUT,
respectively, according to the diagnostic procedure already
discussed in Section 3. Diagnostic results of the circuit for
multifaults are shown in Table 7. In the table, the average
test accuracy of our method is 98.9%, whereas for these
methods adopting these feature extraction methods in [3, 11,
18] to diagnose these multifaults in the leapfrog filter circuit
their diagnostic accuracies are 88.1%, 90.5%, and 86.8%,
respectively. Therefore, we can see that the proposed method
is better than the other diagnostic methods for multifaults in
the leapfrog filter circuit.

Through the two experiments, the results of the proposed
method can be summarized as follows:

(1) The proposed method in the paper has better accu-
racy than other methods such as the first wavelet
coefficients technique and the lifting wavelet method.

(2) For multifaults diagnosis, the method adopting
EEMD, kurtosis, and relative entropy to construct
feature vectors has better classification accuracy than
the traditional method used in [3, 11, 18].

(3) ELM classifiers with the techniques of EEMD, kur-
tosis, and relative entropy sometimes get the same
better classification results as SVM classifiers with

Table 6: Fault classes of the leapfrog filter for the multifaults.

Fault ID Nominal value Fault value
F1 R2: 10k, R4: 10k R2: 20k, R4: 20k
F2 R2: 10k, R4: 10k R2: 5k, R4: 5k
F3 R3: 10k, R4: 10k R3: 20k, R4: 5k
F4 R3: 10k, R4: 10k R3: 5k, R4: 5k
F5 R4: 10k, R8: 10k R4: 15k, R8: 5k
F6 R4: 10k, R8: 10k R4: 5k, R8: 20k
F7 C2: 20nf, C3: 20nf C2: 30nf, C3: 30nf
F8 C2: 20nf, C3: 20nf C2: 10nf, C3: 10nf
F9 C2: 20nf, C4: 10nf C2: 10nf, C4: 20nf
F10 C2: 20nf, C4: 10nf C2: 10nf, C4: 5nf

the same original feature vectors. Meanwhile, ELM-
basedmethod hasmuch lower classification time than
SVM-based method.

To sum up, the proposed method in the paper is accept-
able from two aspects: test accuracy and time cost. It has
higher test accuracy and fast classification capacity.

5. Conclusions

In this paper, a combinational diagnostic method for analog
circuit with EEMD, relative entropy, and ELM is proposed.
Theproposedmethodmakes gooduse of the EEMD, kurtosis,
and relative entropy technique to construct fault feature
vectors, and then faults classification on CUTs are performed
using the ELM classifier. The effectiveness of the proposed
method has been validated with the classical two benchmark
circuits for single and multifault diagnosis. The results of
experiments show that themethod can distinguish effectively
different faults of circuit with the higher testing accuracy
(99.4%) and the lower testing time.
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Table 7: Diagnostic results of the leapfrog filter for the multiparametric faults.

Diagnostic method Fault ID Average accuracy (%)
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Reference [3] 100 100 51 46 86 100 100 100 98 100 88.1
Reference [11] 100 70 100 98 70 74 100 100 95 98 90.5
Reference [18] 100 100 52 34 82 100 100 100 100 100 86.8
Our method 100 98 100 100 94 96 100 100 100 100 98.8
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